A block Chebyshev-Davidson method for linear response eigenvalue problems
نویسندگان
چکیده
We present a Chebyshev-Davidson method to compute a few smallest positive eigenvalues and corresponding eigenvectors of the linear response eigenvalue problem. The method is actually applicable to the slightly more general linear response eigenvalue problem where purely imaginary eigenvalues may occur. For the Chebyshev filter, a tight upper bound is obtained by a computable bound estimator constructed under a reasonable condition. When the condition fails, we give an adaptive strategy for updating the upper bounds to guarantee the effectiveness of the ChebyshevDavidson method. We also obtain an estimate of the rate of convergence for the Rize values computed in our algorithm. Finally, we present numerical results to demonstrate the performance of the proposed Chebyshev-Davidson method. 2000 Mathematics Subject Classification. 65F15, 15A18. key words and phrases. eigenvalue, eigenvector, Chebyshev polynomials, Davidson type method, convergence rate, upper bound estimator.
منابع مشابه
A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue problems
We propose a block Davidson-type subspace iteration using Chebyshev polynomial filters for large symmetric/hermitian eigenvalue problem. The method consists of three essential components. The first is an adaptive procedure for constructing efficient block Chebyshev polynomial filters; the second is an inner–outer restart technique inside a Chebyshev–Davidson iteration that reduces the computati...
متن کاملAn Adaptive Chebyshev Iterative Method for Nonsymmetric Linear Systems Based on Modiied Moments
Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in the right half plane may be solved by an iterative method based on Chebyshev polynomials for an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev algorithms , in which ...
متن کاملAdaptive Chebyshev Iterative Methods for Nonsymmetric Linear Systems Based on Modified Moments bY
Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in the right half plane may be solved by an iterative method based on Chebyshev polynomials for an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev algorithms, in which t...
متن کاملStability analysis of stratified two-phase liquid-gas flow in a horizontal pipe
This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...
متن کاملInexact Newton Preconditioning Techniques for Large Symmetric Eigenvalue Problems
This paper studies a number of Newton methods and use them to define new secondary linear systems of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate that the new schemes can be used efficiently in test problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 42 شماره
صفحات -
تاریخ انتشار 2016